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a b s t r a c t

As shown recently in (Soare and Barlat, 2010. Convex polynomial yield functions. J. Mech., Phys. Solids,
58, 1804e1818), the principal values based yield function Yld2004, proposed in (Barlat et al., 2005. Linear
transformation based anisotropic yield function. Int. J. Plast., 21, 1009e1039), is polynomial for integer
exponents. Based on this observation, a new algorithm is proposed for implementing symmetric yield
functions formulated in terms of principal values. The algorithm is tested here by simulating with
a commercial FE code the cylindrical deep drawing of two aluminum sheets. It is found that the classical
description of the in-plane directional properties of the sheet (uniaxial r-values and yield stresses), even
if modeled correctly by the yield function, is not sufficient for a unique characterization of the predicted
earing profile. For certain combinations of the directional properties the r-value in biaxial stressing has to
be considered for a correct calibration of the material model. This in turn requires a finer detail in yield
surface modeling and, to achieve it, an ad-hoc extension of Yld2004 is constructed. In combination with
the proposed implementation algorithm, the extension is shown to be a useful research tool, having
some interesting modeling capabilities and satisfactory FE runtime.

� 2011 Elsevier Masson SAS. All rights reserved.

1. Introduction

The yield surface concept lies at the core of the phenomeno-
logical description of the plastic deformation in metals. In associ-
ated plasticity, it models both the yielding and the plastic flow of
thematerial. Because of this dual role of the yield surface, particular
care for its modeling is required. Furthermore, given the complexity
of the underlying mechanism of plastic flow (single and poly-
crystal plasticity), and the increasingly advanced alloying technol-
ogies, a certain complexity in yield surface modeling and an
increase in the number of material parameters are to be expected.
These trends in yield surface development are already visible in
a number of recent contributions: Hosford (1972), Boehler (1987),
Hill (1990), Karafillis and Boyce (1993), Barlat et al. (2005), to
mention just a few representative approaches that have led to
further developments.

In Soare and Barlat (2010) it was shown that some of the recent
yield function models, e.g. Barlat et al. (2005), are polynomial

functions. Based on this observation, a new algorithm for imple-
menting symmetric principal values based yield functions is
proposed in the present work. The algorithm is tested here for
accuracy and efficiency by simulating the deep drawing of cylin-
drical cups.

In cylindrical deep drawing, a disk-shaped blank cut out from
a sheet metal is placed concentrically over a die with cylindrical
cavity and drawn into by a cylindrical punch (here with flat
bottom); a holder pressures the blank during drawing to avoid
wrinkling. The resulting cup has a non-uniform height, featuring
symmetric local maxima (ears) and minima. Given the circular
symmetry of the forming process, this phenomenon is explained by
the anisotropic plastic properties of the sheet. Motivated in part by
its practical implications (each year, billions of aluminum beverage
cans are produced worldwide), the deep drawing problem has been
studied intensively during the past decades, using both phenom-
enological and physical based approaches for modeling the
response of sheet metal. In the present work only the effects of the
initial anisotropy are investigated, and it is shown to explain much
of the non-uniformity, if modeled correctly.

One additional feature of yield functions with relatively large
sets of parameters, unnoticed previously, it seems, is that although
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they are capable of accurate descriptions of the in-plane directional
(uniaxial) properties of a sheet metal, they may predict sensibly
different plastic properties for neighboring stress states. This
phenomenon is evidenced in the present work in the case of deep
drawing simulations. It will be shown that an incorrect description
of the r-value of the material on the flange area (not at the rim)may
affect significantly the profile predictions, and, conversely, that an
adequate calibration of the yield surface model leads to more
coherent predictions. Previous earing profile predictions, seem-
ingly contradictory, e.g. Yoon et al. (2006), Kim et al. (2008),
Rabahallah et al. (2009), may be explained by investigating the
corresponding modeling of the biaxial r-values. Furthermore, the
calibration of strain-rate potentials and of other texture-based
models may also benefit from this observation, e.g., Arminjon
et al. (1994), Van Houtte et al. (2006).

2. The Yld2004 function and its polynomial representation/
implementation

The set of slip systems of a single crystal and the texture of
a polycrystal are two essential constitutive features that govern the
plastic deformation of sheet metal, Hosford (1993), Kocks et al.
(2000). Based on polycrystal calculations, Hershey (1954) and
later Hosford (1972) proposed the following extension of the von
Mises isotropic quadratic yield function:

f ðsÞ ¼ �ð1=2Þ�ðs1 � s2Þnþðs2 � s3Þnþðs3 � s1Þn
��1=n (1)

with si denoting the principal values of the Cauchy stress tensor s.
In Hosford’s theory, the exponent nwas associated with the crystal
structure: n ¼ 6 and n ¼ 8 were recommended for modeling
isotropic approximations of BCC and FCC polycrystals, respectively.
Barlat et al. (2005) extended Hosford’s approach to an anisotropic
formulation by defining
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with S
ðiÞ
j ; i ¼ 1, 2, denoting the principal values of two (symmetric)

image stresses SðiÞ defined by

The components sx, Sx, etc, are taken with respect to a material
Cartesian coordinate system (detailed in the next section). In what
follows, the function f defined in (2) will be referred to as Yld2004.
The parameters of Yld2004 are the coefficients aðiÞj of the two
transformation tensors. In particular, Hosford’s criterion, the
isotropic case, is recovered by imposing the conditions Sð1Þ ¼ s0 ¼
Sð2Þ; with s0 ¼ s� trðsÞ=3 denoting the stress deviator:

The original formulation of Yld2004 in eq. (2) requires the
calculation of the principal values of the two image stresses. For

general 3D stress states this is a rather complicated procedure
since it should use several charts for mapping the three solutions
of the characteristic equation. For plane stress states (2D) the
characteristic equation is solvable by square roots, but for certain
(highly symmetric) combinations of material parameters there
are nonzero stress states that render the gradient of the yield
function singular, a phenomenon due to the analytical formula
used for calculations (square roots) and not to the intrinsic
formulation.

A simpler implementation strategy for Yld2004 is obtained if its
polynomial form is used instead. With Newton’s binomial formula,
eq. (2) is rewritten as follows, Soare and Barlat (2010):

f nðsÞ ¼
Xn
p¼0

WnQn�p

�
Sð1Þ

�
Qp

�
Sð2Þ

�
(5)

whereWn :¼ ð�1Þpn!=½p!ðn� pÞ!�; and, for a generic image stress S,

QpðSÞ :¼ ðS1ÞpþðS2ÞpþðS3Þp (6)

Using the characteristic equation associated to an image stress S,
the sums of powers Qp satisfy in the 3D case

Qp ¼ I1Qp�1 þ I2Qp�2 þ I3Qp�3; p � 3 (7)

with

I1 :¼ trðSÞ; I2 :¼
�
S$S� I21

�.
2; I3 :¼ detðSÞ (8)

Q0 ¼ 3;Q1 ¼ I1;Q2 ¼ ðS1Þ2þðS2Þ2þðS3Þ2¼S$S¼ I21þ2I2 (9)

In the 2D case, when sz ¼ sxz ¼ syz ¼ 0;we can safely distinguish
S3 ¼Sz ¼ a5sxþa6sy; and then Qp ¼ PpþðS3Þp; where Pp ¼ ðS1Þpþ
ðS2Þp;with the sums of powers Pp satisfying the simpler recurrence
formula

Pp ¼ I1Pp�1 � I2Pp�2;p � 2 (10)

where, this time, the invariants correspond to the 2 � 2 leading
submatrix of S, call it S:

I1 :¼ trðSÞ ¼ Sx þ Sy; I2 :¼ detðSÞ ¼ SxSy �
�
Sxy

	2
; and

P0 ¼ 2; P1 ¼ I1 (11)

A finite element implementation requires the computation of
the function value f(s), gradient D f(s), and hessian H f(s) (for
implicit codes). All can be computed explicitly and fast, even for

high homogeneity degrees, by using the above recurrence
formulas. The algorithm is detailed in Appendix A. This
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að1Þ1 ¼ að2Þ1 ¼ 2=3; að1Þ2 ¼ að2Þ2 ¼ �1=3; að1Þ3 ¼ að2Þ3 ¼ �1=3; að1Þ4 ¼ að2Þ4 ¼ 2=3;

að1Þ5 ¼ að2Þ5 ¼ �1=3; að1Þ6 ¼ að2Þ6 ¼ �1=3; að1Þ7 ¼ að2Þ7 ¼ að1Þ8 ¼ að2Þ8 ¼ að1Þ9 ¼ að2Þ9 ¼ 1
(4)
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implementation was used in all the FE simulations featured in the
present work.

3. Constitutive framework and integration algorithm

To study the effects of the initial anisotropy, and its mathe-
matical representation, only, on earing predictions, the simplest
constitutive model of plastic deformation has been adopted in this
work. In essence, using a local descriptionwith respect to amaterial
frame allows for a straightforward extension of the classical model
for small strains to motions involving finite strains and finite
rotations. Although restricted to a particular range of strain paths
(along which an anisotropic evolution of the plastic properties can
be neglected in a first approximation), this extension is sufficient
for the current problem (one step deep drawing). In depth treat-
ments of the relevant theory of plasticity algorithms and the
nonlinear finite element method can be found in, e.g. Simo and
Hughes (1998) and Belytschko et al. (2000).

The motion x ¼ x(X,t) of a body B3R3 is described with
respect to a global orthonormal frame {ei}. x denotes the spatial
position of the material particle labeled X˛B and identified as
X¼ x(X,t0), with t0 ¼ 0 denoting the initial moment. {xi}denotes the
set of coordinates of position x. The polar decomposition of the
deformation gradient F ¼ vx=vX reads: FðX; tÞ ¼ RðX; tÞUðX; tÞ ¼
Vðx; tÞRðX; tÞ; with R denoting the orthogonal part of the local
motion, and U, V the (right, left) stretch tensors. From the velocity
field v ¼ _x one derives its spatial gradient Lðx; tÞ ¼ vv=vx; and,
further, the basic decomposition of L into symmetric (rate of
deformation) and antisymmetric (spin) parts: L ¼ DþW ;

D ¼ ðLþ LT Þ=2; W ¼ ðL� LT Þ=2:
A local orthonormal frame fei ¼ eiðX; tÞg is associated with

each material point X of the anisotropic body B. The plastic prop-
erties of a small neighborhood of X will be characterized with
respect to feig and hence the local frame will also be referred to as
the material frame. For a heterogeneous material the local frame
features in general spatial variations. In what follows we assume
a homogeneous body B and hence the initial orientation of the local
frame is the same for all points X˛B. For example, in the case of an
orthotropic sheet metal the local frame may be aligned along the
three orthogonal symmetry axes of the sheet: the rolling direction
(RD), transverse and normal directions, TD and ND. These are the
axes with respect to which all the characterizing experiments (for
determining the directional plastic properties of the sheet) are
performed.

The constitutive response of the sheet at a (material) location X
is described by a local observer at X and with respect to the
material frame feig. The orientation of the local frame evolves
according to:

_ei ¼ QðX; tÞei; eiðt0Þ ¼ R0ei (12)

with R0 the orthogonal tensor specifying the initial orientationwith
respect to the global frame, and with Q an antisymmetric tensor,
the spin rate determined by the motion. In the present work it is
assumed that the initial characteristics of the anisotropy of the
plastic properties are not affected by the deformation process. In
particular, the local frame does not rotate with respect to its
material neighborhood (no material rotation). Thus only spatial
rotation is considered. Then the natural choice for the spin rate is
Q ¼ _RRT ; Tugcu and Neale (1999).

In what follows a line over the components of a second order
tensor indicates that the coordinates are taken with respect to the
local frame. Yielding of the material at particle X takes place when

f
�
sij

	 ¼ HðepÞ (13)

with f denoting the yield function,H the (isotropic) hardening curve
and ep a measure of the accumulated plastic strain. By assuming
small elastic strains, the total rate of deformation as perceived in
the local frame fX; eig is additively decomposed into elastic and
plastic parts

Dij ¼ D
e
ij þ D

p
ij (14)

with the plastic part, during continuous yielding, characterized by
the normality rule

D
p
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The small elastic strains assumption is consistent with the
relatively small (compared to their elastic counterparts) stresses
sustained by metals during plastic deformation (even after hard-
ening). Since _l > 0 if and only if the body deforms plastically at X, _l
can be taken as a measure of accumulation of plastic strain and
hence

_e
p ¼ _l5epðtÞ ¼ epðt0Þ þ

Zt

t0

_lds (16)

Finally, the stressestrain relationship characterizing the material
response is assumed to take the hypo-elastic form

_sij ¼ Cijkl

�
Dij � D

p
ij

�
(17)

with Cijkl ¼ Cijkl; the constant elasticity tensor C being assumed
isotropic.

Summarizing, eqs. (13)e(17) define the response of the sheet
metal. The algorithm for the numerical integration of these equa-
tions is presented in Appendix B. As a final remark, we note here
that the above formulation is invariant (to spatial rigid motions)
since the left member of the hypo-elastic law (17) is the (rotated)
Green-Naghdi (objective) stress rate of the Cauchy stress. The Jau-
mann rate is used instead in some FE codes for 3D elements, e.g,
ABAQUS (2004). The two rates are approximately equal for defor-
mation paths involving moderate shear strains (like in the present
case) and hence the same hypo-elastic law can be used with both
rates. However, when shearing is significant (e.g., deep drawing
followed by ironing) the hypo-elastic law should be modified
accordingly for the Jaumann rate, Atluri (1984).

4. A first illustration: earing prediction for AA2090-T3

The performance of the new polynomial implementation of
Yld2004was first tested in the FE simulation of the deep drawing of
the AA2090-T3 aluminum alloy described in Barlat et al. (2005) and

Fig. 1. Left: geometry of the deep drawing process. Right: the mesh on the blank used
in all 2D deep drawing simulations (2494 elements, 2573 nodes).
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Author's personal copy

for which deep drawing predictions were reported in Yoon et al.
(2006). The material parameters of the Barlat et al. (2005) model
of this alloy, referred in what follows as Model 0, are listed in
Table 1 of Appendix C, in the notation of eq. (3).

In light of the assumed symmetry (orthotropic), only a quarter of
the blank was modeled. Several simulations were conducted with
2D elements (Abaqus: S4R with 15 integration points across
thickness) and 3D elements (Abaqus: C3D8R), both types of
elements using reduced integration. The structures of the two
meshes used for the blank, 2D and 3D, are shown in Figs. 1 and 2.
The 3D mesh had three layers across thickness. Further technical
details of the deep drawing simulations, together with the
parameters of the deep drawing geometry described in Fig.1, can be
found in Appendix C.

The results (cup profiles) of the 2D and 3D simulations using the
present implementation of Yld2004 are featured in Fig. 3. On
a desktop computer (2 GHz processor) the CPU time for the 3D
simulationwas 8020.6 s (approx. 2 h:30 minwall clock time), while
for the 2D simulation the CPU time was 12,164 s (approx.
4 h:30 min wall clock time). Also, comparison 2D simulations with
the same coarser structure of the 3D mesh (and with similar final
results) were conducted and required approx. 50min (wall clock) to
complete. Given the detail of the meshes, these run-times indicate
a good performance of the polynomial implementation (the case
n¼ 8); in the case of the coarser meshes, the runtime is comparable
to the one reported in Yoon et al. (2006) for Yld2004 implemented
in principal values form.

The agreement between the profiles resulted from the present
simulation and the simulation of Yoon et al. (2006) is good, overall.
The analysis of Kim et al. (2008) overestimates significantly the
height of the 45�0 s ears. There is, however, a qualitative aspect
predicted by both the present analyzes and Kim et al. (2008): the

cup profiles feature eight ears, and not six, as reported in Yoon et al.
(2006). Kim et al. (2008) made no attempt at explaining this
phenomenon.

5. Earing analysis and an explanation of the previous results

The standard characterization of the plastic properties of the
sheet is based on the classical directional r-values and yield stresses:
elongated samples cut out from the sheet at several angles from the
rolling direction are tested in uniaxial tension for their yielding
stress and their capability to deform (r-value). Assuming a perfect
symmetry in tension-compression of the plastic properties, this
material characterization is complete for the rimof theblank, at least
in the early moments of drawing: the rim is subjected to
a compressive hoop stress only. Furthermore, onemay note that the
r-valuemeasured in a direction q from the RD, r(q), characterizes the
hoop strain at the rim in the direction p/2 � q. This observation led
Yoonet al. (2006) toproposeaverysimple formula for predicting the
shape of the cup profile based on the directional r-value only,
formula that can be synthesized as follows: on the ½0�

; 90
� � interval

the shape of the profile is the mirror symmetry of the directional r-
value (more precisely, the profile has the samemaxima andminima
as the r-value). The predicted profile of the AA2090-T3 cup reported
in the cited paper clearly agrees with this rule, while the present
simulations contradict it by featuring two small additional ears
along TD. By the above theory of earing, this could have happened if
the r-value had a local maximum at 0� from RD.

At this point it is worth mentioning that even in the case when
six ears are predicted for the cup profile, the two smaller ears along
the TDmay still develop at some point of the drawing phase and yet
disappear by the end of the simulation. This phenomenon can be
remarked on the profile history of the Poly6 model of AA2090-T3
reported in Soare et al. (2008). It can be explained by the reversal of
the hoop stress from compressive to tensile during the last
moments of drawing (when the material travels along the die
shoulder). Too slow such a transition (favored in the present case by
the smooth die shoulder) may lead to plastic straining in the
opposite sense (hoop tension), removing any small ears that have
developed previously, while the material was on the flange.
Furthermore, it becomes clear that a constitutive assumption like
kinematic hardening can have a significant effect upon the local
minima of a cup profile, as tested in Yoon et al. (1998), and the small
local maxima (the small ears). However, without a thorough
understanding of the effects of initial anisotropy alone, it is difficult
to discern the actual extent of the influence of kinematic hardening
on the cup profile predictions.

The discrepancy between the results of the present simulations
and the one of Yoon et al. (2006) may be explained by a particular
type of contact used in the cited work (stick-after-contact for the
die cavity and/or a small additional force to avoid frequent changes
in contact status: these conditions increase further the tensile hoop
stress during the last moments of drawing since the radius of the
die is slightly larger than that of the punch and blank thickness
combined). It will be shown, next, that Model 0 of AA2090-T3
agrees with an extended version of the above r-value based theory
of earing and favors the prediction of a cup with eight ears, and not
six, given the present simulation conditions (Appendix C) and
constitutive model.

A closer look at the final deformation field featured by the
drawn cup in Fig. 2 (the distortion of the mesh) reveals that,
roughly, the upper half of the wall of the cup has suffered a non-
uniform radial deformation. This part of the cup wall comprises
all the material initially positioned between the punch wall and the
rim of the blank (the flange area). During the drawing phase this
material is subjected to a biaxial stress state: hoop compression and

Fig. 2. Left: mesh on the blank used in the 3D simulation of the deep drawing of
AA2090-T3 (2280 elements, 3212 nodes, three layers deep). Right: a final (quarter) cup
(of the AA2090-T3 simulation with 2D elements).

Fig. 3. Cup profiles of the Model 0 of AA2090-T3 reported in Barlat et al. (2005),
predicted by the present 3D and 2D simulations. Also shown are the Model 0 predicted
profiles reported in Yoon et al. (2006), Kim et al. (2008), and experimental data.
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radial traction (if neglecting the shear stress, friction and blank
holding force). Assuming a plane stress state on the flange area, and
that the hoop stress sq is proportional with the drawing (radial)
stress sr, the Cauchy stress components with respect to the local
(material) frame of the blank are

sx ¼ sq

�
cos2qþqsin2q

�
;sy ¼ sq

�
sin2qþqcos2q

�
;

sxy ¼ sqð1�qÞsinqcosq (18)

with r and q denoting polar coordinates on the flange area. By
assumption, q :¼ sr=sq ¼ constant along any ring of material

(r ¼ constant). Practical considerations led Van Houtte et al. (1993)
to approximate this stress ratio as uniform in the radial direction
but the present assumption is more realistic since the material near
the die shoulder is subjected to higher radial and smaller
compressive stresses, the situation being reversed for the material
near the rim of the blank. Since, in the present model, reversing the
stress state does not affect the plastic properties, one may consider
in eq. (18) that sq>0 and sr � 0; and, in any case, that
q � 0.

With the classical definition of the r-value (a comma denotes
differentiation),

the classical r-value (uniaxial traction) is recovered for q ¼ 0. We
shall refer to the above r-value (with stress components given by
eq. (18)) either as the extended r-value, or as the r-value in biaxial
stressing.

Model 0 of AA2090-T3 is reconsidered next from this point of
view: Fig. 4 features its extended directional properties and, for
later shape comparisons, its yield surface. Most relevant for this
discussion is the extended r-value, plotted here for several stress
ratios: q ¼ 0, for the material on the rim, and, as the die shoulder is
approached, q ¼ �0.2 (ratio determined from the FE analysis, and
also consistent with the present drawing ratio, d ¼ Rb=Rpz1:63;
Van Houtte et al. (1993)). While the classical r-value (q ¼ 0) pre-
dicted by Model 0 features a local minimum at 0� from RD, the
extended r-value has a local maximum at this location, for all the
stress ratios q � �0:05. Thus, the material on the flange area is
characterized by Model 0 with (qualitatively) different flow prop-
erties than those of the rim. Due to this characterization, the
material on the flange along the TD direction strains faster than its
radial neighbors, and hence favors the development of two addi-
tional small ears along TD: the earing profile predicted by the
present simulations, Fig. 3, does indeed have the topology of the
mirror image of the extended r-value, Fig. 4.

6. An extension of Yld2004 and reconsideration of the
previous example

Since the actual AA2090-T3 cup features six ears, a better model
of AA2090-T3 is required for predicting correctly (within the
orthotropic approximation) its earing profile. This model should
incorporate information about the plastic behavior under the
biaxial stress in eq. (18). In fact, for this material, the only new
information that needs to be added to the input data is about the
plastic behavior along RD, since the rest of directions have well
defined contributions to the overall topology of the r-value (local
maxima and minima). Several trials for improving the Yld2004
Model 0 (n ¼ 8) in this manner led to an overall increase in the
distance between predictions and data: AA2090-T3 data is not
sufficiently close to the modeling range of Yld2004 to allow for
further improvements. In this respect, it is worth reminding that
a general sixth order homogeneous polynomial, with 16 indepen-
dent parameters, can give an almost perfect description, Soare et al.
(2008), of the entire data set (7 þ 7directional data, and the
balanced-biaxial yield stress and r-value) reported for this alloy,
Barlat et al. (2005). For n ¼ 8, Yld2004 is generated by an eight
order homogeneous polynomial. With Yld2004 having only 14
parameters, its modeling power will be increased here by adding

Fig. 4. Model 0 of AA2090-T3, Barlat et al. (2005): directional properties of the
material on the flange, and sxy ¼ const. level curves (yield surface).

rq ¼ Dq

Dz
¼ 2f ;sxy

�
sx;sy; sxy

	
cos qsin q� f ;sx

�
sx; sy;sxy

	
sin2q� f ;sy

�
sx;sy; sxy

	
cos2q

f ;sx
�
sx; sy; sxy

	þ f ;sy
�
sx;sy; sxy

	 (19)
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new parameters (up to 25 can be independent for its plane stress
restriction, the number of parameters of the most general plane
stress eight order homogeneous orthotropic polynomial).

An extension of Yld2004 that uses three image stresses has been
recently proposed by Aretz et al. (2010). This extension also is based
on Hosford’s function, eq. (1). A better approach (from a computa-
tional point of view) is to combine the original Yld2004 with the
Karafillis and Boyce (1993) generator as follows:

4f n ¼ P þ Qn

�
Sð3Þ

�
(20)

with P denoting the right-hand member of eq. (2), and Sð3Þ a third
image stress. In what follows the above function will be referred to
as Yld2004B. It has 21 parameters for modeling the in-plane plastic
properties of the sheet. They can be identified by optimizing the
distance between its predictions and data set

g
�
a
ðkÞ
p

�
¼ 1

2

Xj

j¼1

h
ws

j

�
sqj � Yqj

�2þwr
j

�
rqj � Rqj

�2i

þ1
2

h
ws

bðsb � YbÞ2þwr
bðrb � RbÞ2

i

þ1
2

X
j

wr
j

h
rqj � RqjðqÞ

i2þ. (21)

where g is the distance (merit) function, the w’s are weights, sq,
rq; rq; sb, rb denote predicted values (with rq an extended r-value,
and the b subscript indicating balanced-biaxial), Yq denotes the
experimentally measured directional yield stress (normalized with
the yield stress in the rolling direction), Rq denotes the experi-
mental directional r-value, and RqðqÞ denoting a hypothetical, yet,
extended r-value corresponding to a stress ratio q. The dots in the
above formula signify that different stress ratios can be used for the
extended r-value, for the same material direction. Other data
points, like the extended directional yield stress can also be added.
The well known simplex algorithm of Nelder and Mead (1965) was
used to solve

Min g
�
a
ðkÞ
p

�
(22)

When implemented with a sequential stepping strategy (the
input data is incrementally moved along the segment joining the
predicted values of the initial guess and the target data points), this
simple algorithm was able to find a solution with surprising ease.

Two models of AA2090-T3 were created using Yld2004B. Model
1 was intended to reproduce Model 0 with Yld2004B (with
improvedmodeling of the classical directional and balanced-biaxial
properties), while Model 2 was designed to feature a local
minimum of the extended r-value along RD for most of the material
traveling along the flange. For both models the input directional
and balanced-biaxial data set was the same. The two models were
distinguished by the extended r-value input data along RD and TD
as follows:

Models 1 and 2 of AA2090-T3 are presented in Figs. 5 and 6. The
profiles of the cups resulting from the deep drawing simulations for
Models 1 and 2 are featured in Fig. 7. The Model 1-profile repro-
duces the results obtained for Model 0, featuring eight ears.

Fig. 5. Model 1 of AA2090-T3: directional properties of the material on the flange, and
sxy ¼ const. level curves (yield surface). Full circles denote the actual uniaxial data,
whereas open circles indicate the extended r-values used as input. Designed to
reproduce Model 0.

Model 1


½R 0ð�0:05Þ; R0ð�0:1Þ; R0ð�0:15Þ; R90ð�0:05Þ; R90ð�0:1Þ; R90ð�0:15Þ�

¼ ½0:8; 0:9; 1:0; 0:3; 0:5; 0:7�

Model 2


½R 0ð�0:05Þ; R0ð�0:1Þ; R0ð�0:15Þ; R90ð�0:05Þ; R90ð�0:1Þ; R90ð�0:15Þ�

¼ ½0:77; 0:85; 0:9; 0:24; 0:26; 0:28�
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Removing the local maximum of the extended r-values along RD, as
done for Model 2, leads to the correct prediction: a profile with six
ears. Furthermore, Model 2 has smaller extended r-values along TD
than Model 1 and this explains the smaller ears along RD predicted
byModel 1. Thus, we have created twomodels of the samematerial,
with identical uniaxial directional and balanced-biaxial plastic
properties, that predict qualitatively different cup profiles for
cylindrically deep-drawn cups. This modeling exercise will be
repeated in the next section for another aluminum alloy sheet.

7. A second illustration: modeling and earing prediction for
AA3104-H19

In this section the alloy AA3104-H19 described in Aretz et al.
(2010) is studied. Two directional 7-data points sets (yield stress

Fig. 7. Cup profiles predicted by the present Models 1 and 2 of AA2090-T3 (plane
stress simulations).

Fig. 8. Model 1 of AA3104-H19: directional properties of the material on the flange,
and sxy ¼ const. level curves (yield surface). Full circles denote the actual uniaxial data,
whereas open circles indicate the extended r-values used as input.

Fig. 6. Model 2 of AA2090-T3: directional properties of the material on the flange, and
sxy ¼ const. level curves (yield surface). Full circles denote the actual uniaxial data,
whereas open circles indicate the extended r-values used as input. Designed to
improve Model 0 (by flattening the local maximum of the extended r-value of Model
0 along RD).
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and r-value) for uniaxial traction, and two plane strain yielding
points along RD and TD are reported in the citedwork. Additionally,
the cited work used a plane strain yielding point measured from
a test at 45� from RD. Instead of this point, the two balanced-biaxial
predictions of the Aretz et al. (2010) yield surface model are used
here. Two models of AA3104-H19 are created: both should repre-
sent all the above data points identically. The two models are
differentiated by the input data used for the extended r-value:

The two models of AA3104-H19 are presented in Figs. 8 and
9, and the corresponding cup profiles resulted from deep
drawing simulations in Fig. 10. Model 1 is designed so that its
extended r-value has a local maximum along RD, while Model 2
so that its extended r-value has a local minimum along RD. As
a consequence, Model 2-profile features six ears, while Model 1-
profile features eight ears (two extra ears along TD). Further-
more, for both Model 1 and Aretz et al. (2010)-profiles the height
at 0� is greater than the height at 45�0 in contradiction with the
reversed relationship observed in experiments. Finally, we note
that the ears at 45�0 s from RD featured by all the predicted and
measured profiles cannot be explained by the uniaxial direc-
tional properties alone. To explain the development of these
ears, one has to consider the local maxima of the extended r-
value in the interval ½45�

; 60
� �; and the local minima of the

extended directional stress in the same interval, as featured by
both Model 1 and Model 2.

8. A third illustration: a hypothetical material

To test further the modeling capabilities of the Yld2004B
extension and the influence of both the classical and extended r-
values upon the shape of the cup profiles resulting from deep
drawing simulations, a theoretical material, referred to as RMAT, is
designed as follows. RMAT will have the same directional yielding
stress as the AA2090-T3 sheet studied earlier. Its r-values will be
modified as follows:

1) the classical r-value should be uniform;
2) the extended r-value (for nonzero stress ratios q) should

feature two local maxima along RD and TD with one global
minimum in between (a reversal of the global maximum
featured by the actual AA2090-T3 material).

With input data constructed accordingly, the Yld2004Bmodel of
RMAT is presented in Fig. 11, while its parameters are listed in
Appendix C. It can be noticed that the local minima of the

Fig. 9. Model 2 of AA3104-H19: directional properties of the material on the flange,
and sxy ¼ const. level curves (yield surface). Full circles denote the actual uniaxial data,
whereas open circles indicate the extended r-values used as input.

Fig. 10. Cup profiles predicted by Models 1 and 2 of AA3104-H19 (plane stress simu-
lations). Comparison is made with the prediction of Aretz et al. (2010) and the several
experimentally measured cup profiles reported there.

Model 1


½R 0ð�0:05Þ; R0ð�0:1Þ; R0ð�0:15Þ; R15ð�0:05Þ; R90ð�0:05Þ; R90ð�0:1Þ; R90ð�0:15Þ�

¼ ½0:6; 0:7; 0:8; 0:49; 1:7; 1:9; 2:1�

Model 2


½R 0ð�0:05Þ; R0ð�0:1Þ; R0ð�0:15Þ; R90ð�0:05Þ; R90ð�0:1Þ; R90ð�0:15Þ�

¼ ½0:5; 0:55; 0:6; 1:7; 1:9; 2:1�
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directional stress and extended r-value are almost coincident
(around 55�0 and 60�0 respectively). The cup profile resulting from
a deep drawing simulation performed in precisely the same
conditions as for the actual AA2090-T3 material is shown in Fig. 12.
The simulated cup features only four ears in the 45�0 s directions. A
theory of the cup profile based on the classical r-value would
predict that the profile should be uniform; a theory based on the
extended r-value would predict that the profile should feature four
ears positioned along the rolling and transverse directions. The FE
prediction proves that both theories are wrong for RMAT. In this
case, the cause for ear development is the early yielding, and hence
early plastic flow in the 45�’ s directions, as predicted by Hill (1950)
theorem on earing. However, the directional yield stress of RMAT
indicates a more ductile material along TD than RD and, based on
this, an RMAT-cup with a height greater along RD than TD, contrary
to the FE predicted cup. This inequality can be explained only by
considering the extended r-value of RMAT : R0ðqÞ > R90ðqÞ; qs0.

9. Further discussion and conclusions

An early theorem of Hill (1950) states that, during deep drawing,
ears may develop in those directions that are critical points for the
directional yield stress. Later work, e.g. Hosford and Caddell (1993)
and references therein, or Duchene (2003), has shown a good
correlation between ear development and the (uniaxial) r-value of
the sheet. This line of investigation culminated with the mirror
symmetry conjecture of Yoon et al. (2006) recalled earlier. That
conjecture does not hold generally, as shown for a hypothetical
material in Soare et al. (2008), and as seen here in the case of
AA3104-H19. Although the extended r-value has been used
successfully in the present work to improve upon the prediction of
deep-drawn cup profiles, and although it may enlarge the range of
validity of the above conjecture, cup profiles do not have, in general,
the shape of the mirror image (on ½0�

; 90
� �) of the extended r-value

either, as shown here for the RMAT hypothetical material. Never-
theless, even in this hypothetical case the extended r-value does
explain certain features of the cup profile that otherwise cannot be
understood within a theory based on the classical directional
properties only.

To conclude, the present work proposes a new algorithm for the
implementation into finite element codes of yield functions
formulated in terms of principal values of a set of image stresses
and admitting polynomial reformulations. The recent Yld2004
proposed by Barlat et al. (2005) is one such example. When
Yld2004 is tested with the new implementation in the simulation
of cylindrical deep drawing, some deviations from previous reports
are noticed in the case of AA2090-T3. These are explained here by
an incomplete yield surface representation for this alloy. It is
proposed, for deep drawing applications, if accuracy is of primary
importance (e.g. earing prediction), that together with the classical
uniaxial directional properties one should also consider extensions
of these properties to biaxial stress states. This consideration leads
to a more detailed description of the yield surface, but it also
requires larger input data sets. With this purpose, the Yld2004
function (two image stresses) has been extended here, with
minimum additional computational cost, to Yld2004B, a yield
function employing three image stresses and with interesting
modeling capabilities.
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Fig. 12. Height profile of the predicted RMAT-cup drawn in the same conditions as the
actual AA2090-T3 cup (plane stress simulation).

Fig. 11. A hypothetical material and its Yld2004B model: directional properties of the
material on the flange, and sxy ¼ const. level curves (yield surface). Full circles denote
classical directional properties used as input, and open circles denote the extended r-
values (q ¼ �0.05) used as input.

S.C. Soare, F. Barlat / European Journal of Mechanics A/Solids 30 (2011) 807e819 815



Author's personal copy

continuum scale modeling of advanced materials in virtual
fabrication”.

Appendix A. Implementation algorithm for symmetric yield
functions of sums of powers

The following algorithm can be used with general yield func-
tions of the form

f ¼ f
�
Q ð1Þ
0 ; .; Q ð1Þ

n ; Q ð2Þ
0 ; .; Q ð2Þ

n ; .
�

(A.1)

with Q ðiÞ
p corresponding to the i-th image stress and defined by eq.

(7). In what follows the presentation is restricted to the Yld2004B
analytical expression for the function f and to the 3D case, the
simplification to the 2D case being straightforward.

The algorithm proceeds in two steps. In the first step the
sequences Q ðiÞ

p and their derivatives are calculated, while in the
second step these sequences are assembled to calculate the yield
function value and its derivatives. In the first step, the calculations
detailed next for one generic image stress are repeated for each of
the three image stresses of Yld2004B. The stress/strain components
are stored in vector form following the ABAQUS convention

s1 :¼ sxx; s2 :¼ syy; s3 :¼ szz; s4 :¼ sxy; s5 ¼ sxz;

s6 :¼ syz

and, as is customary in FE codes, the vectorial shear strains repre-
sent the double of the tensor strains. Other ordering conventions
can be easily accommodated. The sub-steps for calculating the Q-
powers associated with one image stress are then as follows.

Step 1.0

The yield function is first order positive homogeneous. This
property is used to normalize the stress tensor and hence increase
the number of significant digits used in computer arithmetics (all
calculations in the present work, UMAT subroutine and element
calculations, used double precision). Therefore we calculate the
norm of the Cauchy stress s, S :¼ ðs$sÞ1=2 þ e; with e > 0 a small
number (constant), and define

si :¼ si=S; i ¼ 1; .; 6 (A.2)

Step 1.1

Calculate the image stress, its invariants and their derivatives:

S1 ¼a1s1þa2s2�ða1þa2Þs3;S2 ¼ a3s1þa4s2�ða3þa4Þs3;
S3 ¼ a5s1þa6s2�ða5þa6Þs3;S4 ¼ a7s4;S5 ¼ a8s5;S6 ¼ a9s6

(A.3)
I1 ¼ S1 þ S2 þ S3;

I2 ¼ 1
2

h
S2
1 þ S2

2 þ S2
3 þ 2

�
S2
4 þ S2

5 þ S2
6

�
� I21

i
; (A.4)

I3 ¼ S1S2S3 þ 2S4S5S6 �
�
S1S

2
6 þ S2S

2
5 þ S3S

2
4

�
(A.5)

Note that in the above (polynomial) expressions of Ii, the
tensorial shear image stress components are already doubled and
hence further differentiation with respect to them requires no
further precautions (doubling). Also, due to the pressure inde-
pendence of the criterion, derivatives with respect to the normal
stress sz need no intermediary calculations and hence they are

calculated directly from the pressure independence condition in
Step 2.2. Then, with a comma followed by a subscript indicating
differentiation with respect to the corresponding Cauchy stress
component, i.e., Ii; j :¼ vIi=vsj; and also omitting the zero deriv-
atives, the relevant derivatives of the invariants are

I1;1 ¼ a1 þ a3 þ a5; I1;2 ¼ a2 þ a4 þ a6; (A.6)

I2;1 ¼ �½ðS2 þ S3Þa1 þ ðS1 þ S3Þa3 þ ðS1 þ S2Þa5�; (A.7)

I2;2 ¼ �½ðS2 þ S3Þa2 þ ðS1 þ S3Þa4 þ ðS1 þ S2Þa6�; (A.8)

I2;4 ¼ 2S4a7; I2;5 ¼ 2S5a8; I2;6 ¼ 2S6a9; (A.9)

I2;11 ¼ �½ða3 þ a5Þa1 þ ða1 þ a5Þa3 þ ða1 þ a3Þa5�; (A.10)

I2;21 ¼ �½ða3 þ a5Þa2 þ ða1 þ a5Þa4 þ ða1 þ a3Þa6�; (A.11)

I2;22 ¼ �½ða4 þ a6Þa2 þ ða2 þ a6Þa4 þ ða2 þ a4Þa6�; (A.12)

I2;44 ¼ 2a27; I2;55 ¼ 2a28; I2;66 ¼ 2a29; (A.13)

I3;1 ¼
�
S2S3�S2

6

�
a1þ

�
S1S3�S2

5

�
a3þ

�
S1S2�S2

4

�
a5; (A.14)

I3;2 ¼
�
S2S3�S2

6

�
a2þ

�
S1S3�S2

5

�
a4þ

�
S1S2�S2

4

�
a6; (A.15)

I3;4 ¼ 2ðS5S6�S3S4Þa7; I3;5 ¼ 2ðS4S6�S2S5Þa8;
I3;6 ¼ 2ðS4S5�S1S6Þa9; (A.16)

I3;11 ¼ ðS3a3 þ S2a5Þa1 þ ðS3a1 þ S1a5Þa3 þ ðS2a1

þ S1a3Þa5; (A.17)

I3;21 ¼ ðS3a3 þ S2a5Þa2 þ ðS3a1 þ S1a5Þa4 þ ðS2a1

þ S1a3Þa6; (A.18)

I3;41 ¼�2S4a5a7; I3;51 ¼�2S5a3a8; I3;61 ¼�2S6a1a9; (A.19)

I3;22 ¼ ðS3a4 þ S2a6Þa2 þ ðS3a2 þ S1a6Þa4 þ ðS2a2

þ S1a4Þa6; (A.20)

I3;42 ¼�2S4a6a7; I3;52 ¼�2S5a4a8; I3;62 ¼�2S6a2a9; (A.21)

I3;44 ¼�2S3a
2
7; I3;54 ¼�2S6a7a8; I3;64 ¼�2S5a7a9; (A.22)

I3;55 ¼ �2S2a
2
8; I3;65 ¼ 2S4a8a9; I3;66 ¼ �2S1a

2
9: (A.23)

Step 1.2

Calculate the first three elements in the sequences
ðQpÞp; ðQp;1Þp; etc.

Q0 ¼ 3; Q1 ¼ trðSÞ ¼ I1; Q2 ¼ I21 þ 2I2

Q1;i ¼ I1;i; Q2;i ¼ 2
�
I1;i þ I2;i

	
; Q2;ij ¼ 2I2;ij
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Step 1.3

Use the recurrence formula (7) to calculate the rest of the
needed elements in the sequences ðQpÞp; ðQp;1Þp; etc. If n is the
homogeneity degree, then.

For p from 3 to n DO

Qp ¼ I1Qp�1 þ I2Qp�2 þ I3Qp�3

Qp;i ¼ I1;iQp�1 þ I1Qp�1;i þ I2;iQp�2 þ I2Qp�2;i þ I3;iQp�3

þ I3Qp�3;i

Qp;ij ¼ I1;iQp�1;j þ I1;jQp�1;i þ I1Qp�1;ij þ I2;ijQp�2 þ I2;iQp�2;j

þ I2;jQp�2;i þ I2Qp�2;ij þ I3;ijQp�3 þ I3;iQp�3;j þ I3;jQp�3;i

þ I3Qp�3;ij

End DO
For the three image stresses of Yld2004B, thewholeQ-sequences

of the first two image stresses need to be stored for the final calcu-
lations in the next step, while the third image stress requires storage
of the end entries only, i.e., QnðSð3ÞÞ; Qn;iðSð3ÞÞ; etc.

Finally, calculate the function value, gradient and hessian. To
this end, let P denote the n-th order homogeneous polynomial that
defines the yield function, that is, 4f nðsÞ ¼ : PðsÞ; and defineN:¼ n/
2. Eq. (20) is rewritten as

P ¼ Qn

�
Sð3Þ

�
þWNþ1QNþ1

�
Sð1Þ

�
QNþ1

�
Sð2Þ

�

þ
XN
k¼0

Wk

h
Qk

�
Sð1Þ

�
Qn�k

�
Sð2Þ

�
þ Qn�k

�
Sð1Þ

�
Qk

�
Sð2Þ

�i

where, for n ¼ 8, the vector of binomial coefficients is
W ¼ ½1:0; �8:0; 28:0; �56:0; 70:0�:

Step 2.1

Calculate P and its derivatives: initialize

and then add the rest of the terms of the polynomial expansion:
For k from 0 to N DO

End DO.

Step 2.2

Calculate yield function value and derivatives. Define

Y :¼ ðP=4Þ1=n; T :¼ Y=ðnPÞ

and then calculate the gradient,

f ;i ðsÞ ¼ TP;i ðsÞ; for is3; and f ;3 ðsÞ ¼ �½f1ðsÞ þ f ;2 ðsÞ�
the hessian,

f ;ij ¼
h
TP;ij � ðn� 1Þf ;i f ;j =Y

i.
S; for i; js3; and

f ;31 ðsÞ ¼ �½f ;11 ðsÞ þ f ;21 ðsÞ�; etc;
and, finally, the yield function value:

f ðsÞ ¼ SY

Appendix B. Return mapping algorithm

The constitutive eqs. (15) and (17) form a nonlinear system of
ordinary differential equations subject to the constraint (13).
Explicit integration of this system of equations is impossible for
general yield functions and hardening laws. This appendix presents
the algorithm used in the present work for its numerical integra-
tion, an adaptation of the return mapping algorithm featured in
Simo and Hughes (1998). The algorithm receives as input the
previous material characteristics at the integration point (here, the
equivalent plastic strain), the previous stress state and the current
strain increment, and calculates the response of thematerial, that is,
the new stress, its new material/plastic parameters, and an esti-
mation of the elasticeplastic tangent modulus, denoted here by Ep.

In what follows all considerations refer to an arbitrary but fixed
integration point and hence its specification shall be omitted. Let
½tn; tnþ1 :¼ tn þ Dt� be the time interval over which the current
strain increment De takes place. tn is the moment of the previous
equilibrium state for which Sn and ePn are known. Here S denotes
the matrix ½sij�; of components in the local frame. The rotation over
the current increment is calculated from the polar decomposition
DF ¼ DRDU ¼ DVDR of the deformation gradient increment
DF :¼ Fðtnþ1ÞF�1ðtnÞ. Assuming the principal stretching directions
(ofDU) constant during the current increment, the strain increment
is calculated by the ABAQUS FE code as De ¼ ln DV (and then
projected onto the local frame).

The trial stress Str is defined as the stress that would be
obtained if De were a purely elastic deformation

Str :¼ Sn þ C : De (B.1)

Clearly, if f ðStrÞ � HðepnÞ � 0 the current increment De is indeed
elastic and the update is simply

Snþ1 ¼ Str; epnþ1 ¼ epn; Ep ¼ C (B.2)

P ¼ Qn

�
Sð3Þ

�
þWNþ1QNþ1

�
Sð1Þ

�
QNþ1

�
Sð2Þ

�
P;i ¼ Qn;i

�
Sð3Þ

�
þWNþ1

h
QNþ1;i

�
Sð1Þ

�
QNþ1

�
Sð2Þ

�
þ QNþ1

�
Sð1Þ

�
QNþ1;i

�
Sð2Þ

�i
P;ij ¼ Qn;ij

�
Sð3Þ

�
þWNþ1

h
QNþ1;ij

�
Sð1Þ

�
QNþ1

�
Sð2Þ

�
þ QNþ1;i

�
Sð1Þ

�
QNþ1;j

�
Sð2Þ

�
þ.

i

P ¼ P þWk

h
Qk

�
Sð1Þ

�
Qn�k

�
Sð2Þ

�
þ Qn�k

�
Sð1Þ

�
Qk

�
Sð2Þ

�i

P;i ¼ P;i þWk

h
Qk;i

�
Sð1Þ

�
Qn�k

�
Sð2Þ

�
þ Qk

�
Sð1Þ

�
Qn�k;i

�
Sð2Þ

�
þ.

i
P;ij ¼ P;ij þWk

h
Qk;ij

�
Sð1Þ

�
Qn�k

�
Sð2Þ

�
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�
Sð2Þ
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þ.

i
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If f ðStrÞ � HðepnÞ > 0; then De cannot be entirely elastic (for
otherwise epnþ1 ¼ epn; a contradiction) and hence the following
inequality must hold

Dep :¼
Ztnþ1

tn

_e
p
dt ¼ epnþ1 � epn>0 (B.3)

The constitutive system (13)e(17) has to be integrated such
that at the end of the time step the yielding condition and the flow
(normality) rule are both satisfied. The numerical integration
scheme must then necessarily be implicit (e.g. backward Euler:
evaluations at the end of the time step). Integrating eq. (17)
leads to

Snþ1�Sn ¼
Ztnþ1

tn

_SdtzC :

2
64De� vf

vS
ðSnþ1Þ

Ztnþ1

tn

_e
p
dt

3
75

¼ C :
�
De� vf

vS
ðSnþ1ÞDep

�
(B.4)

and the system of equations to be solved for the new stress state
and the increment (B.3) is FðxÞ ¼ 0; where

FðxÞ ¼
�
F1ðxÞ
F2ðxÞ

�
¼
2
4S :DSþDep

vf
vS

ðSnþ1Þ�De

f ðSnþ1Þ�H
�
epnþDe

p	
3
5; with x :¼

�
DS
De

p�

(B.5)

with S :¼ C�1 denoting the compliance tensor and DS :¼Snþ1�Sn.
This system is solved with the NewtoneRaphson algorithm:

xkþ1 ¼ xk þ dx; where
vF
vx

ðxkÞ½dx� ¼ �FðxkÞ; and

dx :¼
�
dDS
dDe

p�
(B.6)

The starter point for the sequence of NewtoneRaphson itera-
tions is x0 ¼ ðStr � Sn; 0Þ. Denoting with DSðkÞ; SðkÞ ¼ Snþ
DSðkÞ; and DepðkÞ the k-th iterations of DS; Snþ1; and Dep; respec-
tively, and further

MðxÞ :¼ Sþ Dep
v2f
vSvS

ðSÞ; epðkÞ :¼ epn þ DepðkÞ (B.7)

the linear system for increments reads

8><
>:

MðxkÞ :dDSþ vf
vS

ðSkÞdDep ¼�F1ðxkÞ
vf
vS

ðSkÞ$dDS�H0
�
epk

�
dDep ¼�F2ðxkÞ:

(B.8)

Solving the second equation above for dDep,

dDep ¼ 1

H0
�
epk

�
�
F2ðxkÞ þ

vf
vS

ðSkÞ$dDS
�

(B.9)

and substituting in the first equation leads to the following linear
system

�
H0

�
epðkÞ

�
MðxkÞ þ

vf
vS

�
SðkÞ

�
5

vf
vS

�
SðkÞ

��
: dDS

¼ �
�
H0

�
epðkÞ

�
F1ðxkÞ þ F2ðxkÞ

vf
vS

�
SðkÞ

��
(B.10)

that can be efficiently solved for the increment dDS by using the
Cholesky decomposition of the positive definite matrix on the left
hand side of the above equation. Then dDep is calculated with eq.
(B.9). The stress and hardening parameter increments are then
updated by the NewtoneRaphson formula (B.6) and if the norm of
the residual has decreased under a desired tolerance, that is, if

jFðxkþ1Þj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½F1ðxkþ1Þ�2 þ ½F2ðxkþ1Þ�2

q
� T; then the iteration

sequence stops and the last NewtoneRaphson update is accepted
as solution. Usually a tolerance of Tz10�7 is sufficient and is
achieved within kz6 iterations. Since the NewtoneRaphson
sequence is known to converge slowly if the initial estimate is not
close to the solution, an additional precaution was taken in the
present implementation by using a quadratic approximation of jFj
along the NewtoneRaphson direction to perform a line search in
this direction. This ensures that jFj is indeed decreasing during each
NewtoneRaphson step.

Finally, by following the well known derivation, e.g. Simo and
Hughes (1998), from the consistency condition _f ðSÞ ¼ 0; holding
true during continuous plastic flow, the algorithmic tangent
modulus is estimated as

EP ¼ M � 1
vf
vS

$

�
M :

vf
vS

�
þ H0

�
M :

vf
vS

�
5

�
M :

vf
vS

�
(B.11)

Appendix C. Yield surface models and deep drawing
parameters

The parameters listed next define plane stress restrictions of
Yld2004B. Only for AA2090-T3 a 3D analysis was conducted with
Model 0. For this model the additional parameters were as
follow: að1Þ8 ¼ 1:024; að1Þ9 ¼ 1:069; að2Þ8 ¼ 1:052; að2Þ9 ¼ 1:147;
(data from Barlat et al. (2005)). Each deep drawing simulation
was performed in three (ABAQUS) Steps, ABAQUS (2004). In Step 1
the holder (initially positioned at a small distance above the blank)
was moved just enough to make contact with the blank. In Step 2,
the holding force (a quarter of the value reported in Table C4) was
applied on holder (replacing the previous boundary condition in
the z-direction on the holder). The blank holding force is small,

Table C1
Yld2004B parameters of the image stresses (I.S.) for the three models of AA2090-T3.

Model I. S. a1 a2 a3 a4 a5 a6 a7

Model 0 S(1) 0.2888 0.3587 0.2816 0.3607 0.1046 �0.7339 0.9543
S(2) 0.4860 �0.4952 �0.0946 0.4807 �0.7898 0.4345 1.4046

Model 1 S(1) 0.6512 0.8920 0.5346 1.2609 0.2362 0.7385 1.2273
S(2) 0.5578 0.6209 0.5570 0.6171 0.7442 0.0490 1.1413
S(3) �0.8129 0.0827 �1.1632 0.0834 �0.8808 1.1761 1.0930

Model 2 S(1) 0.6402 1.1004 0.6412 1.0965 0.0453 0.3598 1.2750
S(2) 0.6344 0.6472 0.6343 0.6479 0.7549 0.0625 1.1040
S(3) �0.9666 0.1918 �1.1524 0.1313 �0.7071 1.2418 0.9613
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just to prevent wrinkling (out of plane local bending) of the sheet
during drawing. Finally, in Step 3, the drawing step, the punch is
moved vertically, hence drawing the blank into the die cavity.
Large increments in this step were not allowed, to ensure the best
conditions for the kinematic assumptions of the FE code, and to
avoid large variations in the input to the constitutive subroutine:
the maximum time increment in Step 3 was set to 0.001. The
contact in the 3D simulation was “hard” (with the nonstick
condition), while the 2D simulations used the soft contact, with
exponential contact-closure distance. The contact pressure was
approximated as pzF=fp½R2b � ðRd þ rdÞ2�g; while the zero contact
distance was set to 0.001. The tools were modeled as analytical
rigid. To prevent convergence problems during the last moments
of the drawing phase, an elastic (stiff) ring was placed beneath the
die at a distance of 0.005 mm for 2D simulations and 0.1 mm for
the 3D simulation. With soft contact between holder and ring in
Step 3, the ring stops the holder when the blank leaves the flange
area.

Finally, the hardening of AA2090-T3 and RMAT was described
as HðepÞ ¼ AðBþ epÞC ; with A ¼ 646.0 MPa, B ¼ 0.025, C ¼ 0.227,
data from Yoon et al. (2006), while that of AA3104-H19 as HðepÞ ¼
Aþ ðBþ CepÞ½1� expð�DepÞ�; with A ¼ 276.0 MPa, B ¼ 43.6 MPa,
C ¼ 116.2 MPa, D ¼ 50.76, data from Aretz et al. (2010).
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Table C2
Yld2004B parameters of the image stresses (I.S.) for the two models of AA3104-H19.

Model I. S. a1 a2 a3 a4 a5 a6 a7

Model 1 S(1) 0.0625 0.7591 �0.2232 0.9667 0.3701 �0.3824 0.6003
S(2) 0.1946 0.6133 �0.1964 0.2633 0.7090 �0.0710 1.0652
S(3) 0.8223 0.2815 �1.1554 0.2047 �0.0704 �0.6983 1.7212

Model 2 S(1) �0.0342 0.8289 �0.1271 0.9418 0.3275 �0.3545 0.5814
S(2) 0.3071 0.5683 �0.2466 0.3719 0.6747 �0.1014 1.0936
S(3) 0.9689 0.1570 �1.1462 0.3571 0.0024 �0.7533 1.7243

Table C3
Parameters of the image stresses (I.S.) for the Yld2004B model of RMAT.

Model I. S. a1 a2 a3 a4 a5 a6 a7

RMAT S(1) 0.85633 0.19762 �0.36142 0.83550 0.16410 0.83525 1.92838
S(2) 0.33129 0.42931 �0.13865 0.44233 0.25497 �0.26778 �0.00499
S(3) 1.04024 �0.20040 0.78756 �1.13917 �1.05776 0.87730 �1.09652

Table C4
Deep drawing parameters (dimensions in millimeters).

Material Rb thickness Rp rp Rd rd F holder Friction

AA2090-T3 79.38 1.6 48.73 12.70 50.74 12.70 22.2 kN 0.1
AA3104-H19 30.0 0.241 16.5 5.0 16.82 2.5 6.9 kN 0.025
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